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ABSTRACT Array technologies have made it straightfor-
ward to monitor simultaneously the expression pattern of
thousands of genes. The challenge now is to interpret such
massive data sets. The first step is to extract the fundamental
patterns of gene expression inherent in the data. This paper
describes the application of self-organizing maps, a type of
mathematical cluster analysis that is particularly well suited
for recognizing and classifying features in complex, multidi-
mensional data. The method has been implemented in a
publicly available computer package, GENECLUSTER, that per-
forms the analytical calculations and provides easy data
visualization. To illustrate the value of such analysis, the
approach is applied to hematopoietic differentiation in four
well studied models (HL-60, U937, Jurkat, and NB4 cells).
Expression patterns of some 6,000 human genes were assayed,
and an online database was created. GENECLUSTER was used to
organize the genes into biologically relevant clusters that
suggest novel hypotheses about hematopoietic differentia-
tion—for example, highlighting certain genes and pathways
involved in ‘‘differentiation therapy’’ used in the treatment of
acute promyelocytic leukemia.

Array technologies have made it straightforward to monitor
simultaneously the expression patterns of thousands of genes
during cellular differentiation and response (1–5). The chal-
lenge now is to make sense of such massive data sets. For
simple experiments comparing just two samples, it is enough
to rank the genes by their relative induction. Richer experi-
mental designs, however, could involve hundreds of samples—
for example, complete developmental time courses in many
cell lines. No two genes are likely to exhibit precisely the same
response, and many distinct types of behavior may be present.

A key goal is to extract the fundamental patterns of gene
expression inherent in the data. Many mathematical tech-
niques have been developed for identifying underlying patterns
in complex data for such diverse applications as object recog-
nition by machine vision systems, phoneme detection in speech
processing, bandwidth compression in telecommunications,
and signal classification in electrocardiography and sleep
research (6–10). The techniques are essentially different ways
to cluster points in multidimensional space. They can be
directly applied to gene expression by regarding the quantita-
tive expression levels of n genes in k samples as defining n
points in k-dimensional space.

Clustering Techniques. The question is, which clustering
techniques are likely to be most useful for interpreting gene
expression?

One simple approach is to use direct visual inspection to
group together genes with similar expression patterns. This

approach was recently used by Cho et al. (4) to cluster genes
whose expression correlated with particular phases of the cell
cycle. The method is best suited for instances in which the
patterns of interest are clear in advance (such as a periodic
fluctuation in phase with the cell cycle), but it does not scale
well to larger data sets and is less appropriate for discovering
unexpected patterns.

A common computational approach is hierarchical cluster-
ing (6–8). Data points are forced into a strict hierarchy of
nested subsets: the closest pair of points is grouped and
replaced by a single point representing their set average, the
next closest pair of points is treated similarly, and so on. The
data points are thus fashioned into a phylogenetic tree whose
branch lengths represent the degree of similarity between the
sets. Hierarchical clustering has recently been described for
gene expression and has clearly proven valuable (11–13).

Hierarchical clustering, however, has a number of short-
comings for the study of gene expression. Strict phylogenetic
trees are best suited to situations of true hierarchical descent
(such as in the evolution of species) and are not designed to
reflect the multiple distinct ways in which expression patterns
can be similar; this problem is exacerbated as the size and
complexity of the data set grows. Hierarchical clustering has
been noted by statisticians to suffer from lack of robustness,
nonuniqueness, and inversion problems that complicate inter-
pretation of the hierarchy (see ref. 14 for a detailed study).
Finally, the deterministic nature of hierarchical clustering can
cause points to be grouped based on local decisions, with no
opportunity to reevaluate the clustering. It is known that the
resulting trees can lock in accidental features, reflecting
idiosyncrasies of the agglomeration rule.

Various other clustering techniques are used in biological
applications but have not yet been applied to the analysis of
gene expression. These techniques include Bayesian clustering,
k-means clustering, and self-organizing maps (SOMs). Bayes-
ian clustering is a highly structured approach appropriate when
a strong prior distribution on the data is available. k-means
clustering is a completely unstructured approach, which pro-
ceeds in an entirely local fashion and produces an unorganized
collection of clusters that is not conducive to interpretation.

SOMs (9, 10) have a number of features that make them
particularly well suited to clustering and analysis of gene
expression patterns. They are ideally suited to exploratory data
analysis, allowing one to impose partial structure on the
clusters (in contrast to the rigid structure of hierarchical
clustering, the strong prior hypotheses used in Bayesian clus-
tering, and the nonstructure of k-means clustering) and facil-
itating easy visualization and interpretation. SOMs have good
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computational properties and are easy to implement, reason-
ably fast, and scalable to large data sets.

SOMs have been well studied and empirically tested on a
wide variety of problems (15, 16). For example, Mangiameli et
al. (17) applied SOMs and seven hierarchical methods to 252
‘‘messy’’ data sets with real-world data imperfections such as
dispersion, irrelevant variables, outliers, and nonuniform den-
sities. SOMs were found to be significantly superior in both
robustness and accuracy.

SOMs. SOMs are constructed as follows (see Materials and
Methods for details). One chooses a geometry of ‘‘nodes’’—for
example, a 3 3 2 grid. The nodes are mapped into k-
dimensional space, initially at random, and then iteratively
adjusted (Fig. 1). Each iteration involves randomly selecting a
data point P and moving the nodes in the direction of P. The
closest node NP is moved the most, whereas other nodes are
moved by smaller amounts depending on their distance from
NP in the initial geometry. In this fashion, neighboring points
in the initial geometry tend to be mapped to nearby points in
k-dimensional space. The process continues for 20,000–50,000
iterations.

SOMs impose structure on the data, with neighboring nodes
tending to define related clusters. An SOM based on a
rectangular grid is analogous to an entomologist’s specimen
drawer, with adjacent compartments holding similar insects.
Alternative structures can be imposed on the data through
different initial geometries, such as grids, rings, and lines, with
different numbers of nodes.

We developed a computer package, GENECLUSTER, to pro-
duce and display SOMs of gene expression data. The program
was then applied to various data sets involving the yeast cell
cycle and hematopoietic differentiation to evaluate its ability
to assist in interpretation of gene expression.

MATERIALS AND METHODS

SOMs. An SOM has a set of nodes with a simple topology
(e.g., two-dimensional grid) and a distance function d(N1,N2)
on the nodes. Nodes are iteratively mapped into k-dimensional
‘‘gene expression’’ space (in which the ith coordinate repre-
sents the expression level in the ith sample). The position of
node N at iteration i is denoted fi(N). The initial mapping f0 is

random. On subsequent iterations, a data point P is selected
and the node NP that maps nearest to P is identified. The
mapping of nodes is then adjusted by moving points toward P
by the formula:

fi11(N) 5 fi(N) 1 t(d(N, NP), i) (P 2 fi(N)).

The learning rate t decreases with distance of node N from NP
and with iteration number i. The point P used at each iteration
is determined by random ordering of the n data points
generated once and recycled as needed. The function t is
defined by t(x, i) 5 0.02Ty(T 1 100 i) for x 5 r(i) and t(x, i)
5 0 otherwise, where radius r(i) decreases linearly with i (r(0)
53) and eventually becomes zero and T is the maximum
number of iterations. GENECLUSTER is written in C, runs under
UNIX, and requires a Web browser. GENECLUSTER is available
from the authors.

Data Preprocessing. A variation filter was used to eliminate
genes that did not change significantly across samples. Genes
were eliminated if they did not show a relative change of xand
an absolute change of y units, with (x, y) 5 (2, 35) for yeast data
and (x, y) 5 (3,100) for human data. Expression levels were
then normalized to have mean 5 0 and variance 5 1. For yeast
data, expression levels were normalized within each of the two
cell cycles. For the human data, expression levels were nor-
malized within the time points for each cell line.

Cell Culture. HL-60 and U937 cells were provided by
American Type Culture Collection, Jurkat cells by S. Burakoff
(Dana–Farber Cancer Institute, Boston, MA), and NB4 cells
line by M. Lanotte (Hôpital St. Louis, Paris, France). All
trans-retinoic acid (ATRA)-resistant lines have been described
(18). Cells were grown in RPMI medium 1640 with 10% fetal
bovine serum. HL-60, U937, and Jurkat cells were stimulated
with 10 nM phorbol 12-myristate 13-acetate (PMA) (Sigma)
for 0, 0.5, 6, or 24 hours; NB4 cells were stimulated with 1 mM
ATRA (Sigma) for 0, 6, 24, 48, or 72 hours. Final concentration
for dimethyl sulfoxide stimulations was 1.25%.

Yeast Experiments. Yeast data was downloaded from http://
genomics.stanford.edu. The 90-minute time point was ex-
cluded because of difficulties with scaling.

Expression Analysis. A detailed protocol is at http://
www.genome.wi.mit.eduyMPR. Briefly, 1 mg of mRNA was
used to generate first-strand cDNA by using a T7-linked
oligo(dT) primer. After second-strand synthesis, in vitro tran-
scription (Ambion) was performed with biotinylated UTP and
CTP (Enzo Diagnostics), resulting in 40- to 80-fold linear
amplification of RNA. Forty micrograms of biotinylated RNA
was fragmented to 50- to 150-nt size before overnight hybrid-
ization to Affymetrix (Santa Clara, CA) HU6000 arrays.
Arrays contain probe sets for 6,416 human genes (5,223 known
genes and 1,193 expressed sequence tags). Because probe sets
for some genes are present more than once on the array, the
total number on the array is 7,227. After washing, arrays were
stained with streptavidin–phycoerythrin (Molecular Probes)
and scanned on a HewlettPackard scanner. Intensity values
were scaled such that overall intensity for each chip of the same
type was equivalent. Intensity for each feature of the array was
captured by using GENECHIP SOFTWARE (Affymetrix, Santa
Clara, CA), and a single raw expression level for each gene was
derived from the 20 probe pairs representing each gene by
using a trimmed mean algorithm. A threshold of 20 units was
assigned to any gene with a calculated expression level below
20, because discrimination of expression below this level could
not be performed with confidence.

Northern Blotting. Ten to twenty micrograms of total RNA
was electrophoresed through denaturing agarose gels and
transferred to Hybond-N nylon membranes (Amersham Phar-
macia). Hybridization was performed by using Rapid-Hyb
buffer (Amersham Pharmacia). A 476-bp G0S2 probe was
generated corresponding to nucleotides 41–516 of the pub-

FIG. 1. Principle of SOMs. Initial geometry of nodes in 3 3 2
rectangular grid is indicated by solid lines connecting the nodes.
Hypothetical trajectories of nodes as they migrate to fit data during
successive iterations of SOM algorithm are shown. Data points are
represented by black dots, six nodes of SOM by large circles, and
trajectories by arrows.
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lished sequence (GenBank accession no. M69199). Probes
were 32P-labeled by random hexamer priming (Stratagene).

RESULTS

GENECLUSTER accepts an input file of expression levels from
any gene-profiling method (e.g., oligonucleotide arrays or
spotted cDNA arrays), together with a geometry for the nodes.

The program begins with two preprocessing steps that
greatly improve the ability to detect meaningful patterns. First,
the data are passed through a variation filter to eliminate those
genes with no significant change across the samples. This
prevents nodes from being attracted to large sets of invariant
genes. Second, the expression level of each gene is normalized
across experiments. This focuses attention on the ‘‘shape’’ of
expression patterns rather than on absolute levels of expres-
sion.

An SOM is then computed, typically in about 1 min for large
data sets such as below. GENECLUSTER uses a Web-based
interface to visualize the clusters. Each cluster is represented

by its average expression pattern, making it easy to discern
similarities and differences among the patterns (Fig. 2a). The
variation around the pattern can be visualized by means of
error bars or by overlaying the patterns of all members of the
cluster (Fig. 2b).

SOMs are particularly well suited for exploratory data
analysis, to expose the fundamental patterns in the data. The
underlying structure can be readily explored by varying the
geometry of the SOM. With only a few nodes, one tends not
to see distinct patterns and there is large within-cluster scatter.
As nodes are added, distinctive and tight clusters emerge.
Beyond this point, the addition of further nodes tends to
produce no fundamentally new patterns. Although there is no
strict rule governing such exploratory data analysis, straight-
forward inspection quickly identified an appropriate SOM
geometry in each of the examples below.

Yeast Cell Cycle. We first tested GENECLUSTER on a previ-
ously published data set to determine whether it could auto-
matically expose known patterns without using prior knowl-
edge. For this purpose, we used data from a recent study of

FIG. 2. Yeast Cell Cycle SOM. (a) 6 3 5 SOM. The 828 genes that passed the variation filter were grouped into 30 clusters. Each cluster is
represented by the centroid (average pattern) for genes in the cluster. Expression level of each gene was normalized to have mean 5 0 and SD 5
1 across time points. Expression levels are shown on y-axis and time points on x-axis. Error bars indicate the SD of average expression. n indicates
the number of genes within each cluster. Note that multiple clusters exhibit periodic behavior and that adjacent clusters have similar behavior. (b)
Cluster 29 detail. Cluster 29 contains 76 genes exhibiting periodic behavior with peak expression in late G1. Normalized expression pattern of 30
genes nearest the centroid are shown. (c) Centroids for SOM-derived clusters 29, 14, 1, and 5, corresponding to G1, S, G2 and M phases of the
cell cycle, are shown. (d) Centroids for groups of genes identified by visual inspection by Cho et al. (4) as having peak expression in G1, S, G2, or
M phase of the cell cycle are shown.

Genetics: Tamayo et al. Proc. Natl. Acad. Sci. USA 96 (1999) 2909
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Cho et al. (4). These authors synchronized Sacharomyces
cerevisiae in G1, released the cells, and collected RNA at
10-min intervals over two cell cycles (160 min). Expression
levels of 6,218 yeast ORFs were measured by using oligonu-
cleotide arrays. From the set of genes passing a variation filter,
the authors used visual inspection to identify 416 genes
showing peaks of expression in early G1, late G1, S, G2, or M
phase.

We used GENECLUSTER to reanalyze the data, rapidly set-
tling on a 6 3 5 SOM. As shown in Fig. 2a, the SOM
automatically and quickly (computation time 82 sec) extracted
the cell-cycle periodicity as among the most prominent fea-
tures in the data. The neighboring clusters (24, 28 and 29, for
example) contain genes with peak expression in late G1 phase
(25–45 min and 85–105 min; Fig. 2 a and b). The genes agree
well with those identified by visual inspection. Of the 105 late
G1-peaking genes reported in ref. 4 that passed our variation
filter, 91 (87%) were contained in the three G1-associated
clusters identified by the SOM. Of the 14 remaining genes, 7
were located in neighboring clusters. More broadly, the SOM-
derived clusters corresponding to the G1, S, G2, and M phases
of the cell cycle (Fig. 2c) closely match those identified visually
(Fig. 2d).

Macrophage Differentiation in HL-60 cells. We next applied
SOMs to models of human hematopoietic differentiation. This
process is largely controlled at the transcriptional level, and
blocks in the developmental program likely underlie the
pathogenesis of leukemia. Cell lines modeling the differenti-
ation process have been extensively used over the past decade
to study expression of dozens of individual genes. Our goal was
to take a more global approach by creating a reference
database describing the behavior of some 6,000 genes.

We began by studying the myeloid leukemia cell line HL-60,
which undergoes macrophage differentiation on treatment
with the phorbol ester PMA. Nearly 100% of HL-60 cells
become adherent and exit the cell cycle within 24 hours of
PMA treatment. To monitor this process at the transcriptional
level, antisense cRNA was prepared from cells harvested at 0,
0.5, 4, and 24 hrs after PMA stimulation (see Materials and
Methods). Samples then were hybridized to expression-
monitoring arrays from Affymetrix (Santa Clara, CA) con-
taining oligonucleotide probes for 5,223 known human genes

and 1,193 expressed sequence tags, and hybridization intensi-
ties were determined for each gene. The list of genes on the
arrays and all expression data are available at http:yy
www.genome.wi.mit.eduyMPR.

Expression levels were normalized for the 567 genes (9%)
that passed the variation filter. A 4 3 3 SOM was used to
organize the genes into 12 clusters (Fig. 3). Although gener-
ated without preconceptions, the clusters correspond to pat-
terns of clear biological relevance. Most of the known genes
found to be regulated have, in fact, been previously identified
in the extensive literature on macrophage differentiation. Our
study, however, identified the vast majority of these genes in a
single experiment and also uncovered additional ones not
previously known to be regulated.

Cluster 11, for example, contains 32 genes with gradual
induction over the time course, during which time cells grad-
ually lose proliferative capacity and acquire hallmarks of the
macrophage lineage. Four of the genes are duplicates on the
array, reducing the cluster to 28 distinct genes (Table 1). Two
are expresses sequence tags for which no coding sequence is
available. The remaining 26 can be divided into 18 that would
be expected based on current knowledge of hematopoietic
differentiation [such as the antiapoptosis genes Bfl-1 and A20
and Macrophage Inflammatory Protein 1a (MIP1a)] and 8
that would be unexpected.

FIG. 3. HL-60 SOM. HL-60 cells were treated with PMA for 0, 0.5,
4, or 24 hours, and expression levels of more than 6,000 genes were
measured at each time point. The 567 genes passing the variation filter
were grouped by a 4 3 3 SOM.

Table 1. Genes in cluster 11 (PMA-induced genes in HL-60 cells)

Gene Description

Expected
MIP1a Macrophage Inflammatory Protein 1 a
BFL-1 (Bcl-2

related)
PEA-15 Major astrocytic phosphoprotein
CD83 antigen
DTR Diphteria toxin receptor (heparin-binding

EGF-like growth factor)
JUNB Protooncogene
P4HA Procollagen-proline, 2-oxoglutarate

4-dioxygenase (proline 4-hydroxylase),
polypeptide

DAF Decay accelerating factor for
complement (CD55)

EGR2 Early growth response 2
SLP-76 76-kDa tyrosine phosphoprotein
TNFAIP1 Tumor necrosis factor a-inducible protein

A20
KNG Kininogen
Fc-receptor g-chain
Tryptophanyl-tRNA

synthetase
BTG1 B cell translocation gene 1
RASA1 GTPase-activating protein ras p21

(RASA)
CRFB4 Cytokine receptor family II, member 4
Homeobox c1

protein
Unexpected

GLVR1 Leukemia virus receptor 1
PTPN12 Protein tyrosine phosphatase,

non-receptor type 12
FKBP25 FK506-binding protein
CSNK1A1 Casein kinase 1, alpha 1
CSNK2A2 Casein kinase 2, alpha prime polypeptide
RPL3 Ribosomal protein L3
RPL4 Ribosomal protein L4
HIP Putative tumor suppressor (HNC6)
EST GenBank accession no. H80240
EST GenBank accession no. T53118

2910 Genetics: Tamayo et al. Proc. Natl. Acad. Sci. USA 96 (1999)
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Four of the unexpected genes (FKBP25, caseine kinases I
and II, and HIP) suggest that an immunophilin-mediated
pathway may play a role in macrophage differentiation.
FKBP25 is a member of the immunophilin family of FK506-
binding proteins, which are thought to play important roles in
protein folding and trafficking (19). Caseine kinase II has been
shown to play a role in activation of another immunophilin,
FKBP52 (20). The HIP protein interacts with the molecular
chaperone protein hsc70, which in turn acts in concert with
immunophilins and antiapoptotic proteins (21).

Cluster 10 has 142 genes showing late induction. These
include many genes known to be involved in macrophage
differentiation (e.g., CSF1 receptor, IL1b, and cathepsin B).
Cluster 2 contains 64 genes showing down-regulation on
terminal differentiation induced by PMA. These include cell
cycle-related genes, such as those encoding cyclin D2, cyclin
D3, CDK2, and PCNA. Cluster 4 has 71 genes whose expres-
sion peaks within 30 min of PMA treatment, suggesting an

immediate early response. These include serum response
factor (SRF) and the early growth response gene EGR1.

These results suggest that the SOM captured the predom-
inant patterns of gene regulation in this simple model of
macrophage differentiation.

Hematopoietic Differentiation Across Four Cell Lines. We
next investigated whether the SOM approach could be applied
to more complex data sets involving multiple cell lines: HL-60
and the similar myeloid cell line U937, which also undergoes
macrophage differentiation in response to PMA; Jurkat, a T
cell line that acquires many hallmarks of T cell activation in
response to PMA; and NB4, an acute promyelocytic leukemia
cell line that undergoes neutrophilic differentiation in re-
sponse to ATRA. A total of 17 RNA samples were generated,
yielding 6,416 data points in 17-dimensional space. Of these,
1,036 genes passed the variation filter. The genes were classi-
fied with a 6 3 4 SOM (Fig. 4), thereby grouping the 1,036
genes into 24 categories.

Cluster 21 contains 21 genes induced in the closely related
cell lines HL-60 and U937, whereas the adjacent clusters 17
and 20 contain genes induced in one of the two lines. This
indicates that whereas HL-60 and U937 have similar macro-
phage maturation responses to PMA stimulation, there are
transcriptional responses that distinguish the two cell lines.
Cluster 22 contains genes up-regulated in the three myeloid
lines, but not the lymphoid cell line Jurkat.

We focused on Cluster 15, which contains 154 genes induced
by ATRA in NB4 cells but not regulated in the other three cell
lines. NB4 cells harbor a t(15;17) translocation that fuses the
PML and RARa genes, resulting in a fusion protein that blocks
normal neutrophil differentiation (22, 23). ATRA stimulation
restores neutrophil differentiation. This response is the pre-
sumed basis of ‘‘differentiation therapy,’’ which is part of
standard treatment for patients with acute promyelocytic
leukemia, but the precise mechanism of differentiation re-
mains uncertain.

Most of the genes in Cluster 15 encode markers of neutro-
phil differentiation (such as granulocyte colony stimulating
factor receptor, CD59, and defensin a4) or proteins known to
be induced by retinoic acid in various systems (such as the
RIG-E gene and the interferon-inducible genes IFI56, INP10,
and IRF1). Some unexpected genes, however, provide inter-
esting insights into NB4 differentiation.

Of the genes showing unexpected ATRA regulation, the
most strongly induced was the G0S2 gene, which encodes a
protein of unknown function reported as a cyclohexamide-
inducible protein in T cells (24). Northern analysis confirmed
G0S2 induction as early as 6 hours after ATRA treatment of
NB4 cells (Fig. 5). Interestingly, we also found that G0S2 is not
up-regulated in ATRA-induced neutrophil differentiation of
HL-60 cells (which lack PMLyRARa); in dimethyl sulfoxide-
induced neutrophil differentiation of NB4 cells; or in ATRA
stimulation of ATRA-resistant NB4 cells (carrying an inacti-
vating point mutation in the PMLyRARa fusion) (Fig. 5).
Whether G0S2 induction is seen in patients treated with
ATRA in vivo remains to be determined, but its early induction
in NB4 cells is consistent with the hypothesis that G0S2 is a

FIG. 4. Hematopoietic-Differentiation SOM. The 1,036 genes
varying in at least one of four cell lines were used to generate a 6 3
4 SOM. Time courses for four cell lines are shown (Left to Right):
HL-60 1 PMA, U937 1 PMA, NB4 1 ATRA, Jurkat 1 PMA.

FIG. 5. G0S2 Regulation. Cells were treated with the neutrophil-differentiating agents ATRA or dimethyl sulfoxide for the times (in hours)
indicated. RNA was subjected to Northern analysis with a G0S2 probe (Upper). The blots were then reprobed for glyceraldehyde-3-phosphate
dehydrogenase as a loading control (Lower). NB4-S1 is an ATRA-sensitive subclone of NB4. NB4-R1 and NB4-R2 are subclones that fail to
differentiate after ATRA treatment. NB4-R2 has a point mutation in PMLyRARa; the mechanism of ATRA resistance in NB4-R1 is unknown.

Genetics: Tamayo et al. Proc. Natl. Acad. Sci. USA 96 (1999) 2911
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candidate PMLyRARa-specific, ATRA-mediated regulator
of neutrophil differentiation.

Another interesting observation is the specific induction in
NB4 cells of two genes, LMP7 and UBE1L, related to ubiq-
uitin-mediated proteolysis. Proteasome-dependent degrada-
tion of the leukemogenic PMLyRARa fusion protein has been
shown to occur after ATRA stimulation (25) and is thought to
be a critical step in differentiation therapy, but the mechanism
is unknown. Induction of LMP7, encoding a chain of the
multisubunit proteasome (26), is consistent with regulation of
proteolysis though induction of specific proteasome subunits.
In addition, LMP7 has been shown recently to be regulated by
the wild-type PML protein (27). UBE1L encodes a protein
highly similar to the ubiquitin-activating enzyme E1, involved
in ubiquitination of proteins targeted for degradation (28).
The fact that UBE1L is specifically induced, whereas E1 itself
is constitutively expressed in NB4 cells, raises the possibility
that degradation of the PMLyRARa protein in response to
ATRA is achieved through transcriptional induction of spe-
cific components of the proteolytic apparatus. Additional
experiments are required to fully test this hypothesis.

DISCUSSION

Comparative expression studies have long been known to
provide important insight into biological processes. Such stud-
ies have historically proceeded one gene at a time, but the
advent of array technologies has now made it possible to collect
data on thousands of genes simultaneously. Such global views
of gene expression are likely to reveal previously unrecognized
patterns of gene regulation.

Extracting the maximum information from global expres-
sion analysis will likely require a wide range of mathematical
tools, each providing different types of insight. Several recent
papers, such as the study by Chu et al. (5), have employed
hierarchical clustering algorithms to organize genes into a
phylogenetic tree, reflecting similarity in expression patterns.
Hierarchical clustering of 6,000 genes results in 5,999 nested
clusters. The interpretation of these clusters—that is, the
recognition of the fundamental patterns—is left to the ob-
server.

SOMs take a fundamentally different approach. They at-
tempt to provide an ‘‘executive summary’’ of a massive data set
by extracting the n most prominent patterns (where n is the
number of nodes in the geometry) and arranging them so that
similar patterns occur as neighbors in the SOM. As with all
exploratory data analysis tools, the use of SOMs involves
inspection of the data to extract insights.

SOMs are widely used in data mining because they have
many desirable mathematical properties, including scaling well
to large data sets. In our own hands, we have indeed found
them valuable in analyses involving hundreds of experiments.

The examples presented above involve relatively small data
sets but illustrate the value of SOMs. Cell cycle periodicity was
automatically recovered as among the most prominent pat-
terns during yeast growth. Analysis of more complex data sets
of hematopoietic differentiation identified the genes and
pathways previously known to be important in this process and
generated new hypotheses warranting further study. The suc-
cess of the SOM methodology in identifying the predominant
gene expression patterns in these well characterized model
systems suggests that genome-wide expression profiling, to-
gether with appropriate computational tools, is likely to pro-

vide valuable insights into biological processes that are not yet
understood at the molecular level.
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